Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales

نویسنده

  • Assyr Abdulle
چکیده

An analysis of a multiscale symmetric interior penalty discontinuous Galerkin finite element method for the numerical discretization of elliptic problems with multiple scales is proposed. This new method, first described in [A. Abdulle, C.R. Acad. Sci. Paris, Ser. I 346 (2008)] is based on numerical homogenization. It allows to significantly reduce the computational cost of a fine scale discontinuous Galerkin method by probing the fine scale data on sampling domains within a macroscopic partition of the computational domain. Macroscopic numerical fluxes, an essential ingredient of discontinuous Galerkin finite elements, can be recovered from the computation on the sampling domains with negligible computation overhead. Fully discrete a priori error bounds are derived in the L2 and H1 norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales

A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advectiondiffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection-diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domai...

متن کامل

A Multiscale HDG Method for Second Order Elliptic Equations. Part I. Polynomial and Homogenization-Based Multiscale Spaces

We introduce a finite element method for numerical upscaling of second order elliptic equations with highly heterogeneous coefficients. The method is based on a mixed formulation of the problem and the concepts of the domain decomposition and the hybrid discontinuous Galerkin methods. The method utilizes three different scales: (1) the scale of the partition of the domain of the problem, (2) th...

متن کامل

An Optimization Based Coupling Method for Multiscale Problems | Multiscale Modeling & Simulation | Vol. 14, No. 4 | Society for Industrial and Applied Mathematics

A new multiscale coupling method is proposed for elliptic problems with highly oscillatory coefficients with a continuum of scales in a subset of the computational domain and scale separation in complementary regions of the computational domain. A discontinuous Galerkin (DG) finite element heterogeneous multiscale method (FE-HMM) is used in the region with scale separation, while a continuous s...

متن کامل

A weak Galerkin finite element method for second-order elliptic problems

In this paper, authors shall introduce a finite element method by using a weakly defined gradient operator over discontinuous functions with heterogeneous properties. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play important roles in numerical methods for partial differential equations. This article intends to ...

متن کامل

Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains (Abstract)

The present work is concerned with the analysis of the Discontinuous Galerkin Finite Element Method (DGFEM) for linear • diffusion problems, • elasticity problems,

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012